大数据分析最难的是什么

日期:2017-09-01      来源:otpub.com      作者:otpub      编辑:灵枫      点击:325次

从先进的BI工具到机器学习,人工智能,现代企业拥有着各式各样整理分析数据的方法和途径。然而,当我们将焦点放在分析工具身上时,我们也可能忽略了数据本身的重要性。毕竟如果没有正确的数据,视觉化和预测分析也没有任何用处。

大数据

每一个企业需要将他们的基础数据进行分析和甄别,在此基础上,需要对数据进行不同层次和结构的分类。原因如下:


1、数据深度融入在商业的各个环节

现代企业逐渐意识到,纷繁复杂的数据固然重要,而这些数据是否真的被企业职工运用,并对其工作产生了相关性的影响,才是企业领导所看重的。不同的层级岗位和职位角色都需要做出正确的决策,而良好的决策必须是基于用户数据所提出的。

如果所有的这些数据被收集到一个中心位置,进行数据分析,那么对客户的长期行为分析并进行消费预判则成为了可能。同样地,根据这样的方法,其他部门,如销售、产品和客户服务部门也能获得前所未有的数据量。

大数据

2、零碎数据共同形成宏观趋势判断

如今,数据在各个行业和企业扮演着越来越重要的角色,企业应该将数据视为机会。每个数据集——CRM、CMS、ERP、营销软件,都包含大量信息和基础数据。现在或许看起来很微小,可是对数据深入的挖掘和分析将会给企业带来巨大的财富。而在现实生活当中,由于不可能预先知道哪些数据很重要,所以企业需要收集尽可能多的数据,这样即使市场环境发生大的改变,企业也能够做出合理的预判和尽可能贴近市场的决策。

大数据

3、基础数据和数据分析同样重要

数据质量是重中之重,倾斜的数据会导致错误的结果。如果你的判断来源于不完整的数据基础,你的决策便会产生一定的偏差甚至产生错误,而这最终将会侵蚀在数据驱动文化背景下人们对数据分析的信心。因此,简洁、完整和正确的数据是有效决策产生的必要前提。


相关推荐:

1、大数据平台如何分析处理数据

2、大数据如何促进客户服务水平的提高?

3、大数据时代如何保证个人信息安全

4、全方位解读大数据未来发展前景


本站所载作品版权归作者及原出处共同所有。凡本网注明“来源:OTPUB”的所有作品、文章,版权均属于本站,转载、摘编或利用其它方式使用上述作品,应注明“来源:OTPUB” 或 “摘自:OTPUB”。

上一篇: 新iPhone要来了!苹果公布邀请函... 下一篇: 如何让大数据分析更有效